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Abstract

New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental
dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical
equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations
that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data
on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely,
its peptide planes and Cα frames), which may be solved for independently. A simple procedure for recombining
these independent solutions results in backbone dihedral angles φ and ψ that resemble those of the known native
structure. Subsequent refinement of these φ-ψ angles by the ROSETTA program produces a structure of ubiquitin
that agrees with the known native structure to 1.1 Å Cα rmsd.

Introduction

Orientational constraints for solution NMR structure
determination may be obtained from residual dipo-
lar couplings (Tolman et al., 1995; Tjandra and Bax,
1997; Prestegard, 1998). Such couplings may be
measured by introducing a relatively weak anisotropy
into the molecular tumbling, e.g., by the addition of
anisotropic elements such as bicelles (Tjandra and
Bax, 1997; Ottiger and Bax, 1998) or other liquid
crystalline media (Rückert and Otting, 2000). Resid-
ual dipolar couplings have the advantage that they
provide long-range constraints on the molecular struc-
ture, whereas traditional NOE and J-coupling mea-
surements provide only short-range constraints that
may not define the relative orientation of distant or
poorly coupled parts of the molecule. Dipolar coupling
data have been used to refine molecular structures that
have already been determined by NOE and J-coupling
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data (Clore et al., 1999; Mueller et al., 2000). It
has also been possible to solve NMR structures di-
rectly from dipolar coupling data (i.e., without NOE
and J-coupling data), provided that additional con-
straints are imposed (Delaglio et al., 2000; Hus et al.,
2000, 2001; Fowler et al., 2000). Dipolar coupling
and J-coupling experiments can be carried out sig-
nificantly faster than NOE experiments, and may be
applied to larger proteins as well; hence, methods for
solving protein structures from dipolar couplings and
J couplings may be useful in high-throughput NMR
structure determination (Medek et al., 2000).

The refinement of NMR structures by dipolar cou-
pling data generally proceeds by trial-and-error meth-
ods similar to those used in the refinement of X-ray
crystal structures, e.g., by a simulated annealing pro-
tocol to minimize an ‘R factor’ that measures the
agreement of the molecular structure with the dipolar
coupling data (Clore and Garrett, 1999). Such a pro-
tocol, however, often encounters a multiple-minima
problem (Chou et al., 2000), which may be over-
come only by complex simulated annealing protocols.
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Moreover, this approach does not exploit the locality
of dipolar coupling data, i.e., whereas the intensity of a
single X-ray reflection depends on the electron density
of the entire molecular structure, a dipolar coupling
measurement pertains to the orientation of a single
bond in the molecule.

In this paper, we show that dipolar coupling con-
straints can be expressed as a simple elliptical equa-
tion. Analytic solutions of this equation are charac-
terized, and then combined with various additional
constraints to produce polynomial equations whose
real roots correspond to all possible solutions for the
unit vector that are consistent with the dipolar cou-
pling measurement(s) and the additional constraint(s).
In several cases, the equation is quartic and, hence,
an explicit formula can be given for the solutions. In
other cases, the set of possible solutions is found by
a simple one-dimensional search over a single para-
metric angle. These solutions may prove helpful in
determining protein structures rapidly from dipolar
coupling data. We illustrate these methods by applying
them to the structure determination of ubiquitin from
a set of dipolar couplings taken in a single anisotropic
medium.

Elliptical form of the fundamental dipolar
coupling equation

In this section, the fundamental dipolar coupling
equation is expressed as a simple elliptical equation.
Although another solution for the dipolar coupling
equation has been published recently (Skrynnikov and
Kay, 2000), the present solution has the advantage of
simplicity and allows exact solutions to be determined
as the roots of a quartic polynomial, as demonstrated
in the next section.

The fundamental dipolar coupling equation for a
chemical-bond unit vector n in the principal alignment
frame may be written (Saupe, 1968; Losonczi et al.,
1999)

Dn = [−Da + (3/2)Dr ]n2
x

+ [−Da − (3/2)Dr ]n2
y + 2Dan2

z, (1)

where Da and Dr represent the axial and rhombic
components of the dipolar coupling tensor. This equa-
tion may be expressed in elliptical form by employing
the unit-vector condition n2

x + n2
y + n2

z = 1 to elim-

inate either ny or nz. If n2
z is eliminated from the

fundamental Equation 1, we obtain the equation

2Da − Dn = [3Da − (3/2)Dr ]n2
x

+ [3Da + (3/2)Dr ]n2
y. (2)

Provided that Dn/Da is greater than a critical value
δcrit ≡ Dxx/Da , this equation is equivalent to that of
an ellipse(

nx

ξn

)2

+
(

ny

ηn

)2

= 1, (3)

where the semiaxes of the ellipse are given by

ξ2
n ≡ 2Da − Dn

3Da + (3/2)Dr

, (4)

η2
n ≡ 2Da − Dn

3Da + (3/2)Dr

. (5)

(The subscript on the semiaxes ξn and ηn indicates the
unit vector to which they pertain, in this case n.) Both
ξ2

n and η2
n are less than one provided that the condi-

tion (Dn/Da) > δcrit holds. Hence, the fundamental
dipolar Equation 1 is satisfied by any vector of the
form

nx = ξn cos τn, (6)

ny = ηn sin τn, (7)

nz = ±
√

1 − n2
x − n2

y, (8)

where the parametric angle τn may adopt any value
between −π and π. Thus, each dipolar coupling Dn

defines two curves on the unit sphere, corresponding
to the positive and negative roots for nz; consistent
with previous usage (Skrynnikov and Kay, 2000),
we denote the solution curves for dipolar couplings
(Dn/Da) > δcrit as type I solutions.

Conversely, if Dn/Da is less than the critical
value δcrit, we may eliminate n2

y from the fundamental
Equation 1 to obtain the analogous elliptical equation(

nx

λn

)2

+
(

nz

ζn

)2

= 1, (9)

where the semiaxes of the ellipse are now given by

λ2
n ≡ Dn + Da + (3/2)Dr

3Dr

, (10)

ζ2
n ≡ Dn + Da + (3/2)Dr

3Da + (3/2)Dr

. (11)

Again, both λ2
n and ζ2

n are less than one provided that
the condition (Dn/Da) < δcrit holds. Hence, the fun-
damental dipolar Equation 1 is satisfied by any vector
of the form

nx = λn cos τn, (12)
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nz = ζn sin τn, (13)

ny = ±
√

1 − n2
x − n2

z, (14)

where the parametric angle τn may again adopt any
value between −π and π. Again, each dipolar cou-
pling defines two curves on the unit sphere, corre-
sponding to the positive and negative roots for ny ;
we denote the solution curves for dipolar couplings
(Dn/Da) < δcrit as type II solutions (Skrynnikov
and Kay, 2000). The minor semiaxes ηn and ζn of
the type I and type II solutions are related by the
equation η2

n + ζ2
n = 1. As an aside, the type I and

type II solutions can be used to derive the ‘powder-
pattern’ diffraction pattern (Appendix A), which is
useful in estimating Da and R from experimental data
(Skrynnikov and Kay, 2000).

The solutions (6)–(8) and (12)–(14) are plotted
for various dipolar couplings Dn in Figures 1 and 2.
The solution curves for the critical dipolar coupling
D = Dxx form two great circles on the unit sphere
that intersect at the ±x axes of the principal alignment
frame; these great circles correspond to the straight
lines in Figure 1 and the cusped curves in Figure 2.
Thus, the critical solution curves divide the unit sphere
into four regions, which we denote as gores, consistent
with cartographic terminology (Canters and Decleir,
1989). The solution curves for the non-critical dipolar
couplings define two families of ellipses (the type I
and type II solutions). The ellipses of each family are
geometrically similar since the ratio of their semiaxes
depends only on the rhombicity R; specificially, the
semiaxis ratio SI for type I solutions equals

SI ≡ ηn

ξn

=
√

2 − R

2 + R
(15)

while the semiaxis ratio SII for type II solutions equals

SII ≡ ζn

λn

=
√

2R

2 + R
. (16)

The semiaxis ratios SI and SII are related by the equa-
tion S2

I + S2
II = 1. For all values of the rhombicity

R < 2/3, the semiaxis ratio SI for the type I solutions
is greater than the semiaxis ratio SII for the type II
solutions. Hence, the type II ellipses are slimmer and
more eccentric (i.e., less circular) than the correspond-
ing type I ellipses (Figure 2), except at the extreme
value R = 2/3, where they are equal in width.

Exact solutions for unit vectors from dipolar
couplings and additional constraint(s)

The elliptical solutions (6)–(8) and (12)–(14) provide
orientational constraints on the direction of bond unit
vectors which may be used in NMR structure determi-
nation, e.g., in restricting the search for conformations
that satisfy the NOE and J-coupling constraints. How-
ever, these solutions can also be used to obtain exact
solutions for the unit vectors, as described in the
remainder of this article.

An unknown unit vector has two degrees of free-
dom, since it is confined to the surface of the unit
sphere. Once its dipolar coupling Dp is specified, a
unit vector p has only one degree of freedom, e.g., the
angle τp in the elliptical solutions (6)–(8) and (12)–
(14). If one other independent constraint equation is
specified in addition to its dipolar coupling, a unit vec-
tor will have zero degrees of freedom, i.e., will have
only discrete solutions. This article considers three
types of additional constraints that provide discrete so-
lutions for unit vectors. In the first case, an unknown
unit vector p is determined from its dipolar coupling
Dp and its angle θnp with a known vector n. In the
second case, three unknown vectors n, p, and q are
determined from their dipolar couplings Dn, Dp and
Dq and their inter-vector angles θnp, θnq, and θpq. (The
angular constraints required in these two cases can be
obtained in several ways, as described below.) In the
third case, an unknown vector n is determined from its
dipolar coupling measured under two solution condi-
tions of differing rhombicities. Analytic solutions are
given below for each of these three cases. In all three
cases, there may be multiple discrete solutions that ful-
fill the constraints; methods for distinguishing among
these discrete solutions are considered below, although
this remains an area for significant improvement.

Solving for a single unit vector from a single angular
constraint

In this subsection, discrete solutions for an unknown
unit vector p are determined from its dipolar coupling
Dp and its angle θnp to a known vector n. Such an
angle constraint may be obtained by several means, as
described below.

The angle θnp between p and n is defined by the
equation

p · n = pxnx + pyny + pznz = cos θnp. (17)

For (Dp/Da) ≥ δcrit (type I), the solutions for p
may be expressed in terms of τp and the known
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Figure 1. A family of dipolar coupling solution curves, as seen looking down the x axis of the principal alignment frame, for a typical value of
the rhombicity (R = 1/3). The central black dot represents the +x axis, which points up out of the page, whereas the +y and +z axes point to
the right and vertically, respectively, in the plane of the page. The differently colored curves represent the solution Equations 6–8 and 12–14 for
values of the dipolar coupling ranging from the one extreme (D = Dzz ≡ 2Da) to the other [D = Dyy ≡ −Da − (3/2)Dr ] in steps of 0.25 Da .
Thus, the red curve corresponds to the unit vectors with dipolar coupling D = 1.75 Da , the magenta curve to those with D = 1.50 Da , the
orange curve to those with D = 1.25 Da , and so on. The solution curves for the critical dipolar coupling [D = Dxx ≡ −Da + (3/2)Dr ]
form two great circles that meet at the ±x axes and, hence, appear here as straight lines (in purple) radiating from the central black dot. These
intersecting great circles divide the surface of the unit sphere into four sections (denoted as gores), which contain the +z, +y, −z and −y axes,
respectively (clockwise from the top).

components of n (cf. Equations 6–8 and 17)

px = ξp cos τp, (18)

py = ηp sin τp, (19)

pz = [
cos θnp − nxξp cos τp − nyηp sin τp

]
/nz.

(20)

Similarly, for type II solutions, the solutions (cf.
Equations 12–14 and 17) are

px = λp cos τp, (21)

pz = ζp sin τp, (22)

py = [
cos θnp − nxλp cos τp − nzζp sin τp

]
/ny.

(23)

To avoid trivial repetition, we adopt the following
notation that combines the type I and type II solutions

W = cos θnp, (24)

U = nxξp, (25)

V =
{

nyηp f or(Dp/Da) ≥ δcrit
nzζp f or(Dp/Da) ≤ δcrit

, (26)

F =
{

nz f or(Dp/Da) ≥ δcrit
ny f or(Dp/Da) ≤ δcrit

, (27)
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Figure 2. Flattened projection of the family of solution curves of Figure 1. The surface of the unit sphere has been interrupted along the two
great circles meeting at the ±x axes (the solution curves for the critical dipolar coupling, in purple) and each of the four gores has been projected
onto the plane using the sinusoidal projection (Canters and Decleir, 1989). This projection (similar to peeling an orange in four sections and
flattening each section) allows the whole surface of the unit-sphere to be viewed at once. The x-axis is vertical in this projection. From left to
right, the four black central dots represent the +y, +z, −y, and −z axes, respectively. The coloring of the solution curves is the same as that
used in Figure 1, and the four cusped curves (in purple) correspond to the solution curves for the critical dipolar coupling. As is evident, the
type II ellipses (those encircling the ±y axes) are slimmer than the type I ellipses (those encircling the ±z axes). The abscissa of this graph
corresponds to the azimuthal angle (in radians) measured in the y − z plane (i.e., the angle made with the +y axis in the projection of Figure 1)
relative to the y axis, while the ordinate equals the arcsine of the x-component (in radians). Hence, the four gores have a combined width of 2π

along the abscissa, while the ordinate has a maximum amplitude of π/2.

G =
{

ξp f or(Dp/Da) ≥ δcrit
λp f or(Dp/Da) ≤ δcrit

, (28)

H =
{

ηp f or(Dp/Da) ≥ δcrit
ζp f or(Dp/Da) ≤ δcrit

. (29)

For the normal case when |F | > 0, the unit vector
equation p2

x + p2
y + p2

z = 1 can be written as

A1 cos2 τp + A2 sin2 τp+
A3 cos τp sin τp + A4 cos τp+
A5 sin τp + A6 = 0,

(30)

where the six coefficients are given by

A1 = U2 + F 2G2, (31)

A2 = V 2 + F 2H 2, (32)

A3 = 2UV, (33)

A4 = −2WU, (34)

A5 = −2WV, (35)

A6 = W 2 − F 2. (36)
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Using the change of variables

cos τp ≡ 1 − t2
p

1 + t2
p

, (37)

sin τp ≡ 2tp

1 + t2
p

, (38)

Equation 30 can be converted into a quartic polyno-
mial equation

b4t
4
p + b3t3

p + b2t
2
p + b1tp + b0 = 0 (39)

with coefficients

b4 = A1 − A4 + A6, (40)

b3 = 2A5 − 2A3, (41)

b2 = 4A2 − 2A1 + 2A6, (42)

b1 = 2A3 + 2A5, (43)

b0 = A1 + A4 + A6. (44)

Such quartic equations may be solved explicitly by ei-
ther Descartes’ or Ferrari’s method (Korn and Korn,
1961). Each real root corresponds to a valid solution
for p on the unit-sphere; hence, there are zero, two or
four solutions. A simple solution can also be found for
the exceptional case F ≈ 0 (Appendix B).

The solutions of Descartes or Ferrari to the quar-
tic equation provide explicit formulae for the possible
discrete solutions of p given its dipolar coupling Dp

and its angle θnp to a known vector n. Additional
data are required to decide between the alternative
discrete solutions. For example, some solutions may
be eliminated because they are inconsistent with other
experimental data or involve steric overlap of atoms.
As an aside, the single-vector solution presented here
can also be used to derive analytical formulae for the
values of θnp for which there are no solutions, given
two dipolar couplings Dn and Dp (Meiler et al., 2000;
Skrynnikov and Kay, 2000).

The set of all solutions for p may also be obtained
by an exhaustive one-dimensional search over the vec-
tors that are separated by an angle θnp from the given
vector n. However, such an exhaustive-search method
is much less efficient than the quartic-polynomial
method described here. The CPU time required to
determine the coefficients and solve Equation 39 is
roughly equivalent to that required to compute and test
three vectors of the exhaustive-search method. Assum-
ing that the exhaustive search is carried out on a fine
grid (say, in steps of 1 deg), the quartic-polynomial
method would then be roughly one- hundred fold more

efficient. This increased efficiency is all the more help-
ful when carrying out two-dimensional searches, e.g.,
in solving for triplets of vectors, as described in the
next subsection.

A key question is the effect of measurement error
on the orientation of the solutions. To assess this ques-
tion, ten million pairs of random unit vectors n,p were
generated uniformly on the unit sphere. A random
measurement error (drawn from a Gaussian distribu-
tion of σ = Da/10) was added to the ideal dipolar
coupling Dp to produce a perturbed Derr

p . Discrete
solutions perr were then determined using the unper-
turbed unit vector n and angle θnp and the perturbed
dipolar coupling Derr

p . A histogram of the angle be-
tween the closest such solution and the corresponding
ideal solution is plotted in Figure 3 (green histogram).
The histogram is dominated by two peaks, one close
to zero degrees deviation and a second, smaller peak
at 180◦ that corresponds to cases in which no solution
for perr was possible. Between these two peaks, there
is a low but relatively uniform distribution of devia-
tion angles. This qualitative behavior also holds for
larger measurement error (σ = Da/5, the red curve
in Figure 3) although, not surprisingly, the peak at 0◦
becomes lower and broader while the peak at 180◦ be-
comes commensurately higher. Thus, if any solution
is possible, it is likely to lie close to the true vector.

Solving for a triplet of unit vectors from three angular
constraints

A triplet of unknown unit vectors n, p, and q can be
determined from the six constraints provided by their
dipolar couplings Dn, Dp, and Dq and the angles θnp,
θnq and θpq between them. Methods for obtaining the
three required angle constraints are discussed in the
next subsection.

If the three unknown unit vectors are denoted as n,
p, and q, the relevant six constraint equations can be
written as

Dn = n · D · n, (45)

Dp = p · D · p, (46)

Dq = q · D · q, (47)

cos θnp = n · p, (48)

cos θnq = n · q, (49)

cos θpq = p · q, (50)

where the unit vector condition is assumed

n · n = p · p = q · q = 1. (51)
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Figure 3. Error histogram for single-vector solutions. Ten million pairs of random unit vectors n and p were generated uniformly on the unit
sphere, and the corresponding dipolar couplings Dn and Dp determined with a rhombicity of 1/3. The dipolar coupling Dp was then perturbed
by a Gaussian random variable of zero mean and standard deviation σ = Da/10, where Da is the axial component of the dipolar coupling tensor.
Solutions were then determined from the known vector n, the inter-vector angle θnp and the perturbed dipolar coupling Dp . The deviation angle
on the abscissa is defined as the minimum angle between the original vector p and the resulting solutions. The histogram of the deviation angle
is dominated by two peaks, near 0◦ and 180◦; the latter peak corresponds to cases in which no solution was feasible for p. This procedure was
repeated for larger perturbations (σ = Da/5); the resulting histogram (red curve) is qualitatively similar, although the peak at 0◦ is lower and
broader and the peak at 180◦ is higher.

As shown above, the solutions of the dipolar coupling
equations can be expressed in terms of three variables
τn, τp, and τq for the vectors n, p, and q, respec-
tively [cf. Equations 6–8 and 12–14]. Therefore, the
present problem is equivalent to finding appropriate
values of the three τ variables that satisfy the three
angular constraints.

A simple method for solving these equations is as
follows. An exhaustive search of one variable (e.g., τn)
is carried out. For each value of τn, the corresponding
n unit vector is calculated (the positive root is always
adopted, for reasons described in the next paragraph).
By treating n as a known vector, the solution of the

previous subsection may be used to obtain all possible
unit vectors p and q that satisfy the angular constraints

cos θnp = n · p, (52)

cos θnq = n · q. (53)

The angles between these possible solutions for p
and q are then calculated to determine whether the
final angular constraint

cos θpq = p · q (54)

can be satisfied to an acceptable tolerance for that
value of τn. This computation is very fast, so that even
a very fine exhaustive search of τn (say, in steps of
0.1 deg) requires negligible computer time.
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Only a quarter of the whole range of τn (e.g., from
0 to π/2) need be searched, because of the eightfold
symmetry among the solutions. For every solution (nx ,
ny , nz), (px , py , pz), and (qx , qy , qz)of the constraint
equations, the eight vectors (exnx , eyny , eznz), (expx ,
eypy , ezpz), and (exqx , eyqy , ezqz) (where ex , ey ,
and ez may equal plus or minus one) also satisfy the
constraint equations. (The eightfold multiplicity arises
from the three binary choices of ex , ey and ez.) By
judicious choice of ex , ey , and ez, it is always possible
to find a solution for n in the first octant of the unit
sphere, in which all the components of n are positive.
Thus, only the values of τn from 0 to π/2 need be
searched and the positive root may always be adopted
in determining n (as described in the previous para-
graph). If the chirality of the triplet of vectors is also
specified, four of the eight solutions will have an in-
correct chirality and may be eliminated from further
consideration.

The exhaustive search of τn between 0 and π/2
may uncover several feasible solutions for n in the first
octant of the unit-sphere, and every such solution cor-
responds to eight solutions on the whole unit- sphere
(four if the chirality is specified). As in the previ-
ous single-vector method, experimental or theoretical
data, such as other dipolar coupling data, other angle
restraints or steric overlaps of atoms, are required to
decide between the alternative discrete solutions.

The sensitivity of such vector-triplet solutions to
random measurement errors was investigated. One
million random vector triplets n, p, and q were gen-
erated uniformly on the unit sphere, and the corre-
sponding dipolar couplings (Dn, Dp , and Dq ) and
inter-vector angles (θnp, θnq , and θpq ) were computed.
All three dipolar couplings were then perturbed by
a random Gaussian error of standard deviation σ =
Da/10, and the corresponding discrete solutions for
the vector triplet nerr, perr, and qerr determined. The
error was taken as the maximum of the three pairwise
deviation angles n-nerr, p-perr and q-qerr. The result-
ing histogram of this maximum deviation angle (the
green shaded curve in Figure 4) shows that the errors
are again dominated by two peaks, a low-deviation
peak close to zero degrees and a second peak at 180◦,
corresponding to those cases in which no solution
whatsoever was possible. Thus, if any solution is pos-
sible, it is likely to lie close to the true vector triplet.
Qualitatively similar results are obtained for the spe-
cial cases of tetrahedral and coplanar arrangements of
n, p, and q, corresponding to the covalent bonds at the

Cα atom and in the peptide plane of proteins (the red
and black curves in Figure 4, respectively).

This method can be extended to rigid groups in
which more than three dipolar couplings are known.
For example, let there be four unit vectors n, p, q, and
r in a rigid group, for which the dipolar couplings (Dn,
Dp, Dq , and Dr ) and inter-vector angles (θnp, θnq, θnr,
θpq, θpr and θqr) are known. An exhaustive search of
one variable (e.g., τn) can be carried out, correspond-
ing to an exhaustive search over all orientations of the
n vector consistent with its dipolar coupling Dn. For
each such orientation of n, discrete solutions for the
remaining three vectors p, q, and r can be obtained
from their dipolar couplings and the angle constraints
with n (θnp, θnq and θnr ) by the single-vector method
of the previous subsection. These discrete solutions
can then be checked to see whether the three remaining
bond angle constraints (θpq , θpr , and θqr ) are satisfied
to an acceptable tolerance. As in the three-vector case,
some of the resulting solutions may be eliminated if
known constraints on the chirality of the vectors are
violated.

Obtaining angular constraints

The solution methods of the two previous subsections
require angular constraints, either the angle between
a known vector and an unknown vector or the angles
between three unknown vectors. Such angular con-
straints may be obtained in three general ways. First,
the angle between some vectors is well defined by
covalent bonding. In particular, there are two rigid
groups per residue in the backbone of proteins, the
peptide plane and the Cα frame defined by the orienta-
tions of the four covalent bonds made by the Cα atom.
Since the inter-vector angles within such rigid groups
are well-defined by the covalent bond geometry, the
orientations of these rigid groups can be determined
provided that at least three dipolar couplings are mea-
sured (Mueller et al., 2000; Hus et al., 2001). Second,
the angle between some vectors may be determined
experimentally, e.g., by the method of cross-correlated
NMR relaxations (Reif et al., 1997). Third, the an-
gle between some vectors may be defined (albeit with
much less confidence than in the first two cases) by
sampling the low-energy conformations of the mole-
cule. For example, rigid fragments consistent with
the amino-acid sequence may be used to define an-
gular constraints between the NH bonds of successive
residues in a protein (Delaglio et al., 2000; Bowers
et al., 2000). Alternatively, a more complete search of
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Figure 4. Error histogram for three-vector solutions. One million triplets of random unit vectors n, p and q were generated uniformly on the
unit sphere, and the corresponding dipolar couplings Dn, Dp and Dq were determined with a rhombicity of 1/3. All three dipolar couplings
were then perturbed by a Gaussian random variable of zero mean and standard deviation σ = Da/10, where Da is the axial component of the
dipolar coupling tensor. Solutions for the three vectors nerr , perr and qerr were then determined from the known inter-vector angles θnp, θnq
and θpq and the perturbed dipolar couplings. The error was taken as the maximum of the three deviation angles between corresponding true and
predicted vectors n-nerr , p-perr and q-qerr . The histogram of the maximum deviation angle is dominated by two peaks, near 0◦ and 180◦; the
latter peak corresponds to cases in which no solution was feasible. The absence of a maximum deviation angle greater than 90◦ results from the
eightfold degeneracy of the solutions. The black and red curves correspond to similar error plots for simulated data for peptide planes and for
Cα frames, respectively.

the conformational space may indicate angles that are
consistent in low-energy conformations, e.g., in seg-
ments with a high helical propensity. Such angles may
then be constrained to their mean value for the purpose
of solving for the unit vectors. Several methods for
sampling low-energy protein conformations to aid in
NMR structure determination have already been de-
veloped (Skolnick et al., 1997; Kolinski and Skolnick,
1998; Debe et al., 1999; Standley et al., 1999; Bowers
et al., 2000).

Solving for a single unit vector from two dipolar
coupling measurements

The direction of a unit vector may also be determined
without angular constraints, provided that dipolar cou-
pling measurements are carried out in two media in
which the molecule has different molecular orienta-
tion tensors (Ramirez and Bax, 1998; Al-Hashimi
et al., 2000). Since each independent dipolar coupling
measurement eliminates one degree of freedom, two
such measurements constrain the unit vector to only
discrete solutions (zero degrees of freedom). How-
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ever, this method requires that the rhombicities of
both media and the relative orientation of the principal
alignment frames of the two media be determined.

In the simplest case, the principal alignment
frames of the two media are identical and the rhom-
bicities alone are different. In this case, a unit vector n
may be solved for explicitly, as follows. Let the semi-
axes of the ellipses in the two media be denoted as
(ξn1, ηn1) and (ξn2, ηn2), respectively. (For simplicity,
we treat only the type I/type I case; the other cases
proceed exactly analogously.) The solution of the first
elliptical equation may be written

nx = ξn1 cos τn1, (55)

ny = ηn1 sin τn1, (56)

nz = ±
√

1 − n2
x − n2

y . (57)

This solution must also satisfy the second elliptical
equation(

ξn1

ξn2

)2

cos2 τn1 +
(

ηn1

ηn2

)2

sin2 τn1 = 1. (58)

Using the change of variables

cos τn1 ≡ 1 − t2
n1

1 + t2
n1

, (59)

sin τn1 ≡ 2tn1

1 + t2
n1

, (60)

the second elliptical equation can be converted into a
quartic equation

t4
n1 − 2Bt2

n1 + 1 = 0, (61)

where the coefficient

B = ξ2
n1 + ξ2

n2 − 2(η2
n1/η2

n2)ξ2
n2

ξ2
n1 − ξ2

n2

. (62)

This quartic equation is actually a quadratic equa-
tion in t2

n1 and, thus, may be solved by the quadratic
formula, yielding zero or two real solutions for t2

n1.
Each such solution (if positive) corresponds to two
solutions for tn1 (since the sign of tn1 may be chosen
freely) and four solutions for the unit vector n (since
the sign of nz may be chosen freely). As in the pre-
vious two methods, these discrete solutions must be
distinguished by other experimental data or by other
considerations such as atomic clashes.

In the more general case, when the two principal
alignment frames do not agree, it appears necessary
to solve the equations by an exhaustive search over
a single variable. In this approach, the unit vector in

the first principal alignment frame is determined from
Equations 55–57 for a large number of closely spaced
values of τn1. The corresponding components n′ in the
second principal alignment frame may then be deter-
mined by multiplying the unit vector n by the appro-
priate rotation matrix R (which must be determined,
e.g., by minimizing the deviations in the resulting co-
valent bond angles from known peptide-group or Cα

bond geometries)

n′ = R · n. (63)

The resulting components of n′ may then be sub-
stituted to determine whether the second elliptical
equation(

n′
x

ξn2

)2

+
(

n′
y

ηn2

)2

= 1 (64)

is satisfied to an acceptable tolerance. By exhaustively
searching τn1 from −π to π, all solutions for n that are
consistent with both elliptical equations may be found
rapidly.

This method requires that the relative orientation
of the two principal alignment frames (e.g., their rela-
tive Euler angles or the R matrix) be known. It may
be possible to determine this relative orientation as
part of the structure determination. For example, the
unit vectors can be determined for a densely sampled
set of Euler angles (R matrices). The quality of each
relative orientation can then be assessed by the con-
sistency of the unit vector solutions with each other,
with well-known covalent bond angles, and with other
experimental data, analogous to the manner in which
the discrete solutions are distinguished. This method
also requires that the rhombicities of the two media
be known, which may be determined by the usual
methods (Clore et al., 1998a, b; Losonczi et al., 1999;
Skrynnikov and Kay, 2000).

Application to protein structure determination

The analytic solutions of the previous section may be
applied to determine protein structure from residual
dipolar coupling data. The essence of the strategy is
to decompose the protein into rigid groups such as
peptide planes (Mueller et al., 2000) and Cα frames
(Hus et al., 2001) (i.e., the tetrahedral arrangement of
covalent bonds at each Cα atom). Discrete solutions
can be found for the orientation of these groups by
the methods described above, provided that at least
three dipolar couplings have been measured for each
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rigid group, e.g., the Cα-C′, C′-N and N-H dipolar
couplings for the peptide groups or the Cα-C′, Cα-Cβ,
and Cα-Hα dipolar couplings for the Cα frames.

A key difficulty of this strategy lies in recombin-
ing the independent solutions for the peptide-plane
and Cα-frame problems into a valid protein structure,
i.e., in determining which of the discrete solutions
for each rigid body is most representative of the pro-
tein structure. A simple technique is to exploit the
fact that the peptide-plane and Cα-frame problems of-
ten overlap, providing multiple independent solutions
for the same vector. For example, the Cα-C′ vector
of residue i belongs to three such problems: the Cα-
frame problem of residue i, the peptide-plane problem
spanning residues i and i + 1 and the Cα-frame prob-
lem of residue i + 1 (since it is nearly parallel to the
N-Cα vector of residue i + 1). In the absence of mea-
surement error, these multiple solutions would agree
exactly, indicating which discrete solutions should be
adopted in reconstructing the protein. Once the orien-
tation of a rigid group has been determined reliably,
the single-vector method can be used to determine the
orientation of unknown bond vectors that are adjacent
to the known orientations of bonds in the rigid body.

We tested our methods on the well-known protein
ubiquitin, for which several X-ray and NMR solutions
already exist (Vijay-Kumar et al., 1987; Cornilescu
et al., 1999). The initial data included up to five dipolar
couplings per residue, namely, the N-H, Cα-C′, C′-N,
C′-H and Cα-Hα dipolar couplings, measured in a sin-
gle anisotropic medium (Ottiger and Bax, 1998). (For
this preliminary study, the two-media solutions de-
scribed above were not employed.) The bond lengths
and bond angles were taken from the literature (Engh
and Huber, 1991). Unfortunately, the simple tech-
nique proposed in the previous paragraph (involving
overlapping vector solutions) does not determine the
absolute orientations of the backbone bond vectors un-
ambiguously, since there were gaps in the data and the
experimental data had significant measurement errors,
possibly arising (in part) from the dynamic internal
motions of the protein (Meiler et al., 2001).

Therefore, we adopted the following protocol for
estimating the φ-ψ backbone dihedral angles at each
residue. Discrete solutions were determined for the
peptide groups in which at least three dipolar cou-
plings had been measured. Since the orientations of
two successive peptide planes determine the φ−ψ an-
gles of the central residue, the m discrete solutions
of the ith peptide plane can be combined with the n

discrete solutions of the (i + 1)th peptide plane to

produce nm estimates of (φ, ψ) of the central residue
(Quine et al., 1997). These estimates are then filtered
to eliminate those that lie in forbidden regions of the
Ramachandran map. A second filtering criterion is the
angle between the N-Cα vector of the ith peptide group
and the Cα-C′ vector of the (i + 1)th peptide group,
which is constrained to lie within a few degrees of
70◦ by the N-Cα-C′ bond-angle constraint at the Cα

atom of residue i (Engh and Huber, 1991). For each
such pair of peptide-plane solutions in which the de-
viation in this angle was less than 10◦, the predicted
orientation of the Cα-Hα bond vector was determined,
from which the corresponding Cα-Hα dipolar coupling
was predicted. The optimal pair of successive peptide-
plane solutions was then determined by the minimum
deviation between the predicted and experimental Cα-
Hα dipolar couplings. If no solution-pair was found
within a 10◦ angular deviation, the procedure was re-
peated with an angle deviation limit of 20◦, and so on,
up to 40◦ deviation. The entire solution of ubiquitin
required 34 seconds on a 1 GHz Pentium III processor.

The dihedral angles resulting from this procedure
are reasonably close to the experimental values (Fig-
ure 5), although only 70% (106/152) of the dihedral
angles could be determined, due to the gaps in the
experimental data. The majority of backbone dihedral
angles (88/106) deviate from their native values by a
relatively small amount (σ = 11◦). However, large de-
viations are observed for some residues; for example,
residues 31, 39 and 58 are α-helical in the native struc-
ture but were predicted to adopt β-strand structure. In
general, these large deviations correlated with large
violations of the N-Cα-C′ angle constraint and/or poor
predictions of the Cα-Hα dipolar coupling. However,
large deviations from experiment were also observed
in two dihedral angles despite good agreement with
the bond angle and measured dipolar coupling.

These initial φ-ψ values were used to generate
a centroid-based reduced representation of ubiquitin,
which was then refined using the ROSETTA package
(Simons et al., 1997, 1999), as modified to include
dipolar coupling data (Rohl and Baker, 2001). A
library of 150 fragments for each three- and nine-
residue segment of the protein sequence was generated
from a non-redundant database of protein structures;
these fragments were selected based on their sequence
similarity to ubiquitin and the agreement between the
fragment dihedral angles and those predicted from the
dipolar couplings. To cover the segments for which
no dihedral angles could be predicted, 25 additional
fragments were selected for every three- and nine-
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Figure 5. Plot comparing the predicted and experimental dihedral angles (Cornilescu et al., 1999). The solid circles indicate φ angles, and the
open squares indicate ψ angles. The predicted dihedral angles generally lie within 10◦ of the experimental values, although there are some
significant outliers.

Figure 6. Comparison of the experimental structure of ubiquitin (1d3z, in blue) with the lowest-energy predicted structure (in red), which agree
with a Cα rmsd of 1.1 Å. Data were not available for the last five (disordered) residues, which were not counted in the rmsd score.

residue segment, based on their sequence similarity
to ubiquitin and the agreement of the fragment dihe-
dral angles with the predicted secondary structure. A
Monte Carlo-minimization procedure (Li and Scher-
aga, 1987) was used to generate low-energy protein

structures from these fragments. One thousand struc-
tures were generated initially and the ten structures
showing the best agreement with the dipolar coupling
data were refined further. The final ten lowest-energy
structures agree with the native structure of ubiqui-
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tin (Cornilescu et al., 1999) very well (0.9–1.5 Å Cα

rmsd); the lowest-energy structure (1.1 Å Cα rmsd) is
depicted in Figure 6. The dipolar data are necessary for
such good structural agreement; the corresponding ten
lowest-energy structures produced by ROSETTA in
the absence of dipolar coupling data range from 3.7–
10.6 Å Cα rmsd. The initial generation of one thousand
structures and the final refinement of the ten structures
required roughly one hour and five hours, respectively,
of CPU time on a 1 GHz Pentium III processor.

A drawback of the present method for finding φ

and ψ angles is that it does not exploit the long-range
quality of the dipolar coupling data. However, the
subsequent ROSETTA refinement does consider all
dipolar coupling data simultaneously and, hence, does
exploit the long- range quality of the data. Moreover,
the short-range solutions provide excellent ‘seeds’ of
local structure for the ROSETTA refinement, which
relies on the insertion of fragments of correct local
structure (Simons et al., 1997, 1999).

The treatment of uncertainties

The most straightforward approach to the error analy-
sis of protein structures derived from dipolar coupling
data would seem to be a Monte Carlo method (Press
et al., 1992). In this approach, an ensemble of mock
data-sets is generated using the uncertainty in the
dipolar coupling measurements and angle constraints.
Specifically, each mock data-set is generated from the
original dipolar coupling and angular constraint data
by adding a Gaussian random variable scaled by the
uncertainty in that quantity (Press et al., 1992). By
assumption, each mock data-set determines a unique
molecular structure; hence, the ensemble of mock
data-sets corresponds to an ensemble of molecular
structures. The ensemble of molecular structures may
then be used to assess the statistical uncertainties in the
molecular structure resulting from the uncertainties in
the dipolar coupling and angular constraint data.
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Appendix A. The powder-pattern probability
distribution

The ‘powder pattern’ probability distribution corre-
sponds to the distribution of dipolar couplings for
a statistical ensemble of unit vectors that uniformly
cover the unit sphere. This ‘powder pattern’ distri-
bution is useful in estimating the axial and rhombic
components Da and Dr (Skrynnikov and Kay, 2000)
and may be derived from Equations 6–8 and 12–14, as
follows. An infinitesimal area on the unit sphere can
be written as

sin θ dθ dφ = J (θ, φ; D, τ) dD dτ, (A1)

where J (θ, φ; D, τ) is the Jacobian for the change of
variables from the polar angles θ and φ to the dipolar
coupling D and elliptical angle τ. For type I solutions
(cf. Equations 6–8), the four variables are related by
the equations

tan φ ≡ ny

nx

=
(

η

ξ

)
tan τ, (A2)

cos θ ≡ nz =
√

1 − ξ2 cos2 τ − η2 sin2 τ. (A3)

Taking the partial derivatives of equations (A2) and
(A3), the corresponding Jacobian equals

J (θ, φ; D, τ) =
(

1

3Da

)√
1

4 − R2

× 1√
1 − ξ2 cos2 τ − η2 sin2 τ

. (A4)

The normalized probability density of unit vec-
tors distributed uniformly on the unit sphere equals
1/(4π); the corresponding probability density for D

and τ for type I solutions is given by

fI(D, τ) =
(

1

4π

)
sin θ dθ dφ

dD dτ

=
(

1

4π

)
J (θ, φ; D, τ)

=
(

1

12πDa

)√
1

4 − R2

× 1√
1 − ξ2 cos2 τ − η2 sin2 τ

. (A5)
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The ‘powder-pattern’ probability distribution may be
obtained by integrating over τ

PI(D) ≡ 8

π/2∫
0

fI(D, τ) dτ

=
(

2

3πDa

)√
1

4 − R2

×
π/2∫
0

dτ√
1 − ξ2 cos2 τ − η2 sin2 τ

=
(

2

3πDaζ

)√
1

4 − R2
K(ξ, λ), (A6)

where K(ξ/λ) is the complete elliptic integal of the
first kind (Beyer, 1991). The factor of eight (instead of
four) in front of the integral results from the fact that a
specified D and τ corresponds to two positions on the
unit sphere, corresponding to the positive and negative
roots for nz (cf. Equation 8).

For type II solutions (cf. Equations 12–14), the
four variables are related by the equations

tan φ′ ≡ nz

nx

=
(

ζ

λ

)
tan τ, (A7)

cos θ′ ≡ ny =
√

1 − λ2 cos2 τ − ζ2 sin2 τ. (A8)

The polar angles φ′ and θ′ defined by these equations
differ from the normal polar angles in that they are
measured relative to the y axis; however, the infinites-
imal area is still given by sin θ′ dθ′ dφ′. Proceeding as
in the type I solutions, the Jacobian equals

J (θ′, φ′; D, τ) =
(

1

6Da

)√
2

2R + R2

× 1√
1 − λ2 cos2 τ − ζ2 sin2 τ

. (A9)

The corresponding type II probability distribution for
D and τ is given by

fII(D, τ) =
(

1

24πDa

)√
2

2R + R2

× 1√
1 − λ2 cos2 τ − ζ2 sin2 τ

(A10)

The ‘powder-pattern’ probability distribution is again
obtained by integrating over τ

PII(D) ≡ 8

π/2∫
0

fII(D, τ) dτ

=
(

1

3πDa

)√
2

2R + R2

×
π/2∫
0

dτ√
1 − λ2 cos2 τ − ζ2 sin2 τ

=
(

1

3πDaη

)√
2

2R + R2
K(λ, ξ).(A11)

The formulae (A6) and (A11) for the powder-pattern
probability distributions agree with earlier solutions
(Skrynnikov and Kay, 2000), except that the present
distributions are normalized to unity.

Appendix B. The single-vector solution for F ≈≈ 0

In this Appendix, we again consider the problem of de-
termining the solutions for an unknown vector p from
its dipolar coupling Dp and its angle θnp to a known
vector n

p · n = pxnx + pyny + pznz = cos θnp (B1)

Under normal conditions, for (Dp/Da) ≥ δcrit (type
I), the solutions for p may be expressed in terms of
τp and the known components of n (cf. Equations 6–8
and 17)

px = ξp cos τp, (B2)

py = ηp sin τp, (B3)

pz = [cosθnp − nxξp cos τp

− nyηp sin τp]/nz. (B4)

Similarly, for type II dipolar couplings, the solutions
(cf. Equations 12–14 and 17) are normally

px = λp cos τp, (B5)

pz = ζp sin τp, (B6)

py = [cosθnp − nxλp cos τp

− nzζp sin τp]/ny. (B7)

However, it can occur that either nz ≈ 0 for a type
I solution or ny ≈ 0 for a type II solution, lead-
ing to division by zero in the pz and py components,
respectively.

It is straightforward to overcome this difficulty,
however. We consider here only the type I case, since
the type II case is exactly analogous. In this case, the
angle Equation 17 can be written as

pxnx + pyny ≈ cos θnp (B8)

corresponding to a linear equation in sin τp and cos τp

nxξp cos τp + nyηp sin τp = cos θnp. (B9)
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Using the change of variables (37)–(38), this equation
may be converted into a quadratic equation

C2t2
p + C1t + C0 = 0, (B10)

where

C2 ≡ cos θnp + nxξp, (B11)

C1 ≡ −2nyηp, (B12)

C0 ≡ cos θnp − nxξp. (B13)

The real roots of this quadratic equation for tp de-
termine the τp corresponding to valid solutions for
p. The px and py components can be determined di-
rectly from these τp values, while two solutions for the
pz component can be determined from the unit-vector

condition pz = ±
√

1 − p2
x − p2

y .
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